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Abstract
Electronic structure, formation energies, transition levels, and concentration of
intrinsic defects in wurtzite ZnO are investigated by the projector augmented
wave method in the generalized gradient approximation. Interstitials, vacancies,
and antisites at different charge states are considered. Convergence of the
formation energies of various intrinsic point defects is carefully checked, and
comparison with earlier results is made and discussed. Even though there
exists a difference for the calculated formation energies of certain defects, our
calculations also show that oxygen and zinc vacancies are the dominant intrinsic
donor and acceptor defects in ZnO, indicating a consistency among results by
different methods. The oxygen vacancy is not expected to be the main source
of strong n-type conductivity in the unintentionally doped ZnO, due to its deep
level in the bandgap, but it must be the origin of the experimentally observed
visible photoluminescence band centred between 2.3 and 2.5 eV.

1. Introduction

Zinc oxide (ZnO) has long been receiving much attention for its applications in varistors,
transparent high power electronics, surface acoustic wave devices, piezoelectric transducers,
and gas-sensing devices [1, 2]. In recent years, ZnO has also acted as a novel wide-bandgap
semiconductor material for short-wavelength optoelectronic devices, such as UV lasers, blue to
UV light emitting diodes and UV detectors [3–6]. The notable properties of ZnO are its direct
bandgap of 3.37 eV at room temperature (RT) and high exciton binding energy of 60 meV, much
higher than the values of some widely used wide-bandgap materials, such as ZnSe (20 meV)
and GaN (21 meV) [7].

ZnO crystal grown by various techniques always presents highly n-type conductivity.
Although the intrinsic n-type conduction is very useful for some applications, it is more
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appreciable to have better control over the conduction type for ZnO. However, it has been
proved that p-type doping is difficult to realize in ZnO [8–10], leading to a bottleneck in
development of ZnO based devices. To overcome the doping bottleneck, it is essential to
achieve a fundamental understanding of the physics of various defects in ZnO. In spite of
numerous studies on defects there is still controversy about the intrinsic defects in ZnO.
Experimental studies on the intrinsic defects in ZnO have long been focused on the choice
of predominant defect from zinc interstitial and oxygen vacancy [11–16]. In addition, the
origin of the green photoluminescence band centred at about 2.3–2.5 eV [7, 17–20] for ZnO
film is not understood yet. This green emission is relatively strong for ZnO film grown
by some vacuum techniques, but very weak in ZnO film grown in the atmosphere [11–22].
Experimentally, it is speculated that the origin is oxygen vacancies [17, 20], zinc vacancies [23],
zinc interstitials [19, 24], zinc antisites [25], or oxygen antisites [7]. Theoretical study on the
intrinsic defects is also helpful to resolve these issues.

In recent years, theoretical investigations based on first principles calculations have been
applied to study the defect physics of ZnO. Sun studied the intrinsic defects in ZnO, including
the oxygen vacancy, zinc vacancy, and zinc interstitial, by the full potential linear muffin-tin
orbital method, and concluded that the zinc interstitial is the dominant donor according to
its shallower defect level [26]. Kohan and Van de Walle [23, 27] studied different possible
native point defects in ZnO by the plane-wave pseudopotential method in the local density
approximation (LDA). Their results indicated that the oxygen vacancy and zinc vacancies are
the dominant donor and acceptor species, respectively. They also concluded that all native
donors have deep transition levels and that n-type conductivity in undoped ZnO should not
be attributed to native defects. Zhang et al [28] also calculated the formation energies of
native defects in ZnO by the plane-wave pseudopotential method in the LDA. Oxygen and
zinc vacancies also have the lowest formation energies in their calculations, but the formation
energies of most defects have a considerable difference from Kohan’s results. Oba et al [29]
calculated the electronic structure of native defects in ZnO by the plane-wave pseudopotential
method in the generalized gradient approximation (GGA), and showed that oxygen vacancies
and zinc vacancies act as dominant donor and acceptor defects with deep levels, in agreement
with Kohan’s and Zhang’s LDA studies, but they concluded that zinc interstitials and zinc
antisites are shallow donors, which may be employed to explain the n-type conductivity of
undoped ZnO.

Even with so many calculations as discussed above, there is still significant discrepancy
between the data obtained by different groups. For example, the formation energies of the
neutral zinc antisite (ZnO) calculated by various groups [23, 28, 29] show a difference of 2–
3 eV, while the formation energies of the charged Zn2+

O defect exhibit an even larger difference
of 3–5 eV. It is also noticed that there is no systematic check of the effect of different calculation
parameters on defect formation energies. Kohan et al [23] reported a check for the convergence
of defect formation energies with supercell size. They calculated the difference in formation
energies of Zni at tetrahedral and octahedral sites at various supercell sizes, using an empirical
pair-potential calculation approach, and found a decrease of ∼1 eV for the difference when the
supercell is increased from 3×3×2 to 4×4×4. They suggested an internal relaxation approach
to ensure the relative formation energies converge at a smaller supercell. However, the internal
relaxation is in contradiction with the defect-induced structure optimization, in which all atoms
should move to their energy favourable positions. Moreover, they only studied the convergence
of formation energies of neutral point defects and did not consider that for charged defects.

It is well known that the generalized gradient approximation for the exchange–correlation
potential offers more accuracy and reliability for total energy than the LDA [30]. In addition,
the projector augmented wave (PAW) method is also believed to be more reliable than those
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methods based on pseudopotentials [30–32]. It is our purpose to study the intrinsic defects at
all possible charge states using PAW methods in GGA. The convergence of formation energies
of neutral and charged defects has been systematically checked in our calculations.

2. Theoretical approach

2.1. Details of total-energy calculations

Calculations on the total energies and electronic structure of defects in ZnO are based on
the density-functional theory, using the PAW method as implemented in the Vienna Ab Initio
Simulation Package (VASP) [33]. The GGA is employed for the exchange–correlation (XC)
potential [34]. The Zn 3d electrons were treated as part of the valence band. The cut-off energy
for the plane-wave basis is 400 eV. A 72-atom supercell (3 × 3 × 2) is used for the defect
calculations, with four-k-point sampling in the irreducible Brillouin zone of the supercell. A
108-atom supercell (3 × 3 × 3) and a 256-atom supercell (4 × 4 × 4) are also employed
for a few cases to check the convergence of the calculated defect formation energies. The
projector augmented wave (PAW) method [31] is applied for all the self-consistent electronic
structure calculations, with structure optimization based on the calculated forces on each atom.
In all calculations, all atoms were allowed to relax until the Hellmann–Feynman forces acting
on them became less than 0.01 eV Å

−1
. A jellium background charge was used for charged

systems.

2.2. Defect formation energy

For the ZnO system in equilibrium with a reservoir of Zn and O, the formation energy of a
point defect D at charge state q is defined as [35, 36]

Ef(D, q) = Etot(D, q) − Etot(ZnO, bulk) −
∑

i

niµi + q(εF + Ev + �V ), (1)

where Etot(D, q) is the total energy of the supercell with one defect D, and Etot (ZnO, bulk) is
the total energy for an equivalent supercell containing only bulk ZnO. ni indicates the number
of atoms of type i (host atoms or impurity atoms) that have been added to (ni > 0) or removed
from (ni < 0) the supercell when the defect is created, and µi are the corresponding chemical
potentials of these species, which represent the energy of the reservoir with which atoms are
being exchanged. εF is the Fermi level, referenced to the valence-band maximum in the bulk,
Ev. �V is a correction term to align the reference potential in our defect supercell with that in
the perfect cell.

The ab initio effective chemical potentials for Zn and O are defined as

�µZn = µZn − µ0
Zn, �µO = µO − µ0

O, (2)

with the boundaries as

�EZnO
f < �µZn < 0, �EZnO

f < �µO < 0, (3)

where µ0
Zn is the chemical potential of metallic Zn, and µ0

O is the chemical potential of
molecular oxygen (per oxygen atom). �EZnO

f is the formation enthalpy of ZnO.

2.3. Defect and carrier concentration

At thermodynamic equilibrium, the concentration of a defect in a crystal is given by the
expression:

Cd = Nsites Nconfige−Ef/kBT . (4)
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Table 1. Computed and experimentally measured lattice parameters for a defect-free ZnO wurtzite
structure.

a (Å) c (Å) u (internal)

Calculations 3.287 5.279 0.381
Experiments [16] 3.249 5.205 0.382

Here, Ef is the formation energy of the defect as defined in equation (1). Nsites is the number of
sites in the lattice (per unit volume) where the defect can be incorporated; Nconfig is the number
of equivalent configurations. For vacancies, antisites, and substitutional defects considered in
this work, Nconfig = 1 due to no symmetry breaking occurrence.

For a perfect ZnO crystal, the carrier concentration is

ne = nh = (NC NV)1/2 exp(−Eg/2kT ), (5)

where ne and nh are the concentration of free electrons and holes respectively. k is the
Boltzmann constant and T the temperature. NC (NV) is the effective density of states of the
conduction (valence) band.

For a ZnO crystal with defects, the carrier concentration depends upon the Fermi level in
the following way:

ne = NC exp[−(Eg − εF)/kT ], nh = NV exp(−εF/kT ). (6)

Here, the Fermi level εF is determined by requiring overall charge neutrality [37], i.e.
∑

i

q(i)Ns(i) exp[−E (q)

f (i)/kT ] = NC exp[−(Eg − εF)/kT ] − NV exp(−εF/kT ). (7)

Here, E (q)
f (i) is the formation energy of defect i at charge state q and Ns(i) is the number

of sites where defect i can be formed per unit volume.

3. Results and discussions

3.1. Perfect-crystal ZnO

The computed lattice constants are shown in table 1. According to the computed band structure
for perfect ZnO, the predicted bandgap is 0.8 eV, far below the experimental value of 3.37 eV.
The underestimation for the bandgap [30] is due to the problem of GGA itself, and was also
found in other calculations based on LDA (0.91 eV [23], 0.6 eV [28]) and GGA using the
ultrasoft pseudopotential method (0.96 eV) [29].

In ZnO bulk, the defect properties depend on the chemical potential of the species involved
as shown in equation (1). To find the limiting value for the chemical potentials we need the
energy of metallic Zn and molecular oxygen. Therefore, we compute the total energies for
these two systems. The supercell approach used here is similar to that in [23], and the resulting
formation energy for ZnO is −3.44 eV/ZnO, in good agreement with the corresponding
experimental value −3.61 eV/ZnO [38]. The formation energy of ZnO calculated by the LDA
method is −4.01 eV [23], less accurate than our result due to the overbinding error of LDA [30].

3.2. Convergence of defect formation energies by supercell approach

To check the effect of the size of the supercell, we calculated the defect formation energies at
various supercell size, as shown in figure 1. Only neutral states are considered, and charged
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Figure 1. Dependence of the formation energies of various defects on supercell size at high oxygen
chemical potential (�µO = 0). The solid lines show the data calculated by the PAW method in the
GGA and the dotted lines indicate the data obtained by the PAW method in the LDA.

defects will be discussed later. Formation energies of vacancies always converge at relatively
small supercells, due to little lattice relaxation induced by vacancies. It is clear that the
formation energies of oxygen and zinc vacancies have small changes (∼0.1 eV) when the
supercell size is increased from 3 × 3 × 2 to 4 × 4 × 4. Interstitials have two possible sites in
wurtzite structure: tetrahedrally coordinated (tet) and octahedrally coordinated (oct). With the
supercell size increased from 3×3×2 to 4×4×4, the formation energy for the zinc interstitial
at the octahedral site changes from 6.15 to 5.95 eV, while a change up to 0.87 eV is found for the
tetrahedrally coordinated zinc interstitial. Thus a reasonably reliable defect formation energy
can be obtained for Zni at the octahedral site in the 3 × 3 × 2 supercell, while that for Zni at
the tetrahedral site needs at least a 3 × 3 × 3 supercell to converge. The main reason is due to
the larger relaxation induced by the tetrahedral Zni than that by the octahedral Zni . We found
that the maximum change of Zn–O bond length is 1.2 Å induced by Zni at the tetrahedral site
in the 3 × 3 × 2 supercell, but only 0.4 Å induced by the Zni at octahedral site, which leads to
the large change of the formation energy difference for Zni at tetrahedral and octahedral sites
with increasing supercell size. This is mainly attributed to the unreliable formation energy of
Zni at the tetrahedral site in the 3 × 3 × 2 supercell (as shown in figure 1). Note that the Zni

at the octahedral site always shows a lower formation energy than that at the tetrahedral site
for both 3 × 3 × 3 and 4 × 4 × 4 supercells, indicating that the zinc interstitial prefers to be
stable at the octahedral site. Thus we only need to consider the octahedrally coordinated zinc
interstitial, which shows convergent formation energy in the 3 × 3 × 2 supercell in the full
relaxation approach. The oxygen interstitial is also shown to be more stable at the octahedral
site. The formation energy of the oxygen interstitial at the octahedral site changes only from
2.44 to 2.37 eV with the supercell size increasing from 3 × 3 × 2 to 4 × 4 × 4, indicating
reliable formation energy for the oxygen interstitial obtained from the 3 × 3 × 2 supercell
calculation. We also checked some other defects by the PAW method in the LDA [39], as
shown in figure 1. Although LDA formation energies are a little different from GGA results,
the formation energies also converge at the supercell size of 3 × 3 × 2 in LDA calculation.
Therefore, a 3 × 3 × 2 supercell is used for defect formation energy calculations. Therefore,
the point defects have a minimum separation of 9.9 Å. The estimated uncertainties for defect
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Figure 2. Average electrostatic potential along the [101̄0] direction for perfect and V 2−
Zn defect

cells. The difference between the defect cell and the perfect cell is also plotted, which represents
the difference of their valence band maxima. Inset is the illustration of the V 2−

Zn defect cell for the
electrostatic potential calculation. The larger (red) solid circles represent oxygen atoms while the
smaller (blue) circles represent zinc atoms.

(This figure is in colour only in the electronic version)

formation energies in the 3 × 3 × 2 supercell are expected to be lower than 0.1 eV for most of
the defects and lower than 0.3 eV for Zni at the interstitial sites in our calculations.

3.3. Defects at charged states

The formation energy of a charged defect is a function of the Fermi level, which is customarily
referred to the top of the valence band. For a defect cell, we assign the energy zero to the top
of the valence band of the perfect ZnO, resulting in an energy shift, or the correction term �V
in equation (1). To calculate this shift, an additional procedure needs to be implemented to
‘line up’ the top of the valence band of defect cells with that of perfect ZnO. We computed
the average electrostatic potentials for both doped and pure ZnO and extract the difference
between them at points far from the defect and outside the pseudopotential areas of atoms.
Figure 2 shows the average electrostatic potentials at such points along the [101̄0] direction for
pure ZnO and the doped system with a V 2−

Zn defect. No obvious fluctuation is observed for the
potential difference. The average of the difference along the line is taken as the correction term
�V for V 2−

Zn . We calculated �V for all possibly charged defects using the aforementioned
method and the results for some representative defects are shown in figure 3. It is noted that
the �V term is comparable to the formation energies for some defects, indicating that the
correction term is necessarily taken into account in the expressions for formation energies to
obtain reliable results.

Another issue related to the charged system is the use of a uniform, compensating jellium
background charge to circumvent the Coulomb divergence of the supercell approximation. Due
to the electrostatic interactions between the background charge and the localized charge, the
Coulomb energy of the supercell will converge slowly as a function of supercell size [35, 40].
Makov and Payne [41] proposed to correct for the Coulomb energy error in the case of jellium
compensation, and derived a total-energy correction formula for charge distributions in cubic
supercells. Several different Coulomb correction methods for the supercell approximation have
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Figure 3. The difference of average electrostatic potential (�V ) between some charged defect cells
and the perfect cell, calculated by the method illustrated in figure 2.

Figure 4. Dependence of the formation energies of various charged defects on supercell size at high
oxygen chemical potential (�µO = 0).

been presented [40, 42, 43]. However, most of these approaches work well for ionic materials,
while they lead to an overestimate of the correction term for defects in semiconductors [35].
Since more work is clearly needed to better understand these corrections, we do not employ
any correction for jellium compensation and our results reported below do not include them.
To reduce the effect of the jellium compensation error, we employ a enough large supercell, in
which the interaction between background and localized charge can be negligible.

Now we discuss the convergence of formation energies for charged defects with the
supercell size. We calculate the formation energies for some charged defects (V 1−

Zn , V 2−
Zn ,

Zn1+
i , and Zn1+

i ) at various supercell sizes and the results are shown in figure 4. The difference
between 4 × 4 × 4 and 3 × 3 × 3 cells is larger than the difference between 3 × 3 × 3 and
3 × 3 × 2 cells, which results from the latter difference coming from the increase of the cell
size in one direction and the former coming from the increase in all three dimensions. The
maximum error bar for the formation energies of charged defects in the 3 × 3 × 2 supercell
could be estimated to be about 0.3 eV in our calculations, which is small enough to not change
the main conclusions of the remaining sections. Therefore, convergent formation energies can
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be obtained for charged defects in a 3 × 3 × 2 supercell, indicating that the 9.9 Å separation
is sufficient for screening out the electrostatic interaction in charged supercells using jellium
compensation.

Besides supercell size, k-point summation can also influence the convergence of defect
formation energies. For a defect in the supercell approach, the interaction between defects
in neighbouring supercells leads to dispersion of the defect level in the bandgap [35]. Thus
certain charged states correspond to half-filled defect bands. When the defect level is partially
occupied, the total energy is always a poor approximation to the value expected for an isolated
defect, due to the unequal occupation of the defect level. Averaging over the defect band by
special k-points produces the best approximation to the defect level of the isolated defect. We
employed the Monkhorst–Pack scheme [44] to produce a regularly spaced mesh of 2 × 2 × 2
points (four irreducible points) in the reciprocal unit cell. Since a large 72-atom supercell is
used in our calculations, the defect–defect interactions are relatively weak, leading to limited
influence of dispersion of the defect level on the convergence of the total energy. Therefore, it
is believed that the 2 × 2 × 2 k point mesh can produce converged defect formation energies.
Increasing k-point sampling changes the energy by less than 0.01 eV.

3.4. Defect formation energies

Using equation (1) we computed the formation energies of all the intrinsic defect point
defects, including oxygen and zinc vacancies, interstitials, and antisites, in a 3 × 3 × 2
supercell. There are two possible interstitial sites in the wurtzite structure: tetrahedrally (tet)
and octahedrally (oct) coordinated. As we discussed above, interstitials at octahedral sites
are more stable than those at tetrahedral sites. Therefore, only the octahedrally coordinated
zinc and oxygen interstitials are considered. All possible charge states for these defects are
considered. The results are shown in table 2. The defect formation energies obtained by
previous calculations [23, 28, 29] are also listed in table 2 for comparison. As discussed
above, there is a significant difference between defect formation energies obtained by various
previous calculations. The difference in the formation energies calculated by different methods
is expected due to differences in computational details, especially the functionals for exchange–
correlation potentials, pseudopotential types, k-point sampling, and relaxation approaches.
Based on the aforementioned systematic check for the defect formation energies, we believe
that our calculations using the full relaxation approach give relatively reliable results in the
numerical values of defect formation energies.

The formation energies of dominant defects are shown in figure 5 as a function of Fermi
level at two limiting oxygen chemical potentials, i.e. �µO = −3.44 eV (Zn-rich conditions)
and �µO = 0 (oxygen-rich conditions), respectively. The kinks in the curves correspond
to transitions between defects at different charge states, which can be applied to estimate
thermodynamic defect levels [35]. In the oxygen-deficient condition, the most abundant native
defect in ZnO is the oxygen vacancy, which acts as the dominant intrinsic donor. In the
oxygen-rich condition, the zinc vacancy is the most abundant native defect and serves as the
dominant intrinsic acceptor. It is also confirmed that the oxygen vacancy is a negative-U defect
because the thermodynamic defect level for the transition from charge state 2+ to the neutral
state is higher than that for the transition from 1+ to the neutral state. Note that this is in
agreement with previous studies [23, 28, 29]. The zinc interstitial is also a candidate as the
dominant intrinsic donor in some studies [14, 15]. However, our calculations indicate that
the zinc interstitial is at least 1.0 eV higher in formation energy than the oxygen vacancy, as
shown in figure 5(a). Meanwhile, the formation energy of the oxygen interstitial is about 1 eV
higher than that of the zinc vacancy. The oxygen interstitial has a threefold-degenerated level
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Table 2. Formation energies (Ef) of intrinsic point defects in the ZnO crystal at various charge
states. Values are given at limiting chemical potentials and for Fermi energies (εf) corresponding to
the top and bottom of the valence and conduction bands, respectively. Zinc and oxygen interstitials
are all octahedrally coordinated. The values in parenthesis are the calculated data from [23, 28, 29],
respectively.

Ef (�µO = 0, �µZn = −3.44) Ef (�µO = −3.44, �µZn = 0)

Defect Charge on defect εf = 0 eV εf = 3.37 eV εf = 0 eV εf = 3.37 eV

VO 0 4.25 (4.02a, 4.6b, 3.2c) 4.25 0.81 0.81

VO +1 3.60 (4.16a, 3.9b) 6.97 0.16 3.53

VO +2 1.97 (3.69a, 2.6b, 2.2c) 8.71 −1.47 5.27

VZn 0 1.62 (1.46a, 2.7b, 2.0c) 1.62 5.06 5.06

VZn −1 1.81 (1.80a, 2.6b, 2.0c) −1.56 5.25 1.88

VZn −2 2.43 (2.59a, 2.7b, 2.2c) −4.31 5.87 −0.87

Oi −2 3.60 (4.3b, 4.8c) −3.14 7.04 0.3

Oi −1 2.82 (3.48a, 3.3b, 3.6c) −0.55 6.26 2.89

Oi 0 2.44 (2.49a, 3.1b, 3.3c) 2.44 5.88 5.88
Oi +1 2.36 (2.49a) 5.73 5.80 9.17
Oi +2 2.49 9.23 5.93 12.67

Zni 0 6.15 (5.74a, 6.5b, 4.5c) 6.15 2.71 2.71

Zni +1 4.42 (5.29a, 4.6b) 7.79 0.98 4.35

Zni +2 2.87 (4.88a, 2.9b, 2.4c) 9.71 −0.57 6.17
OZn −2 5.05 (3.97a) −1.69 11.93 5.19
OZn −1 3.69 0.32 10.57 7.2
OZn 0 2.70 (1.72a, 3.7c) 2.7 9.58 9.58
OZn +1 2.51 5.88 9.39 12.76
OZn +2 2.65 9.39 9.53 16.27

ZnO 0 10.27 (10.43a, 7.2b, 8.4c) 10.27 3.39 3.39

ZnO +1 7.99 (5.1b) 11.36 1.11 4.48

ZnO +2 6.52 (8.56a, 3.3b, 5.4c) 13.26 −0.35 6.39

a Reference [23].
b Reference [28].
c Reference [29].

in the gap, with possible charge states ranging from 2+ to 4−. It can serve as both donor
and acceptor in ZnO. Furthermore, antisite defects, including both ZnO and OZn, have also
received considerable attention experimentally [7, 25]. However, the formation energies of the
antisites are always higher than that of the vacancies and interstitials at both the oxygen-poor
and oxygen-rich conditions, indicating the antisites hardly exist in practice.

It is well known that self-compensation by native donor-type defects plays an important
role in the p-type doping bottleneck for ZnO. These donor-type defects always grow in oxygen-
deficient environment. At the low oxygen chemical potential limit in figure 5(a), when the
p-type condition that the Fermi energy is close to the VBM is assumed, the donor-type
oxygen vacancy, zinc interstitial, and zinc antisite exhibit far lower formation energies than
the acceptor-type zinc vacancy, oxygen interstitial, and oxygen antisite defects. This suggests
that a heavy self-compensation effect for p-type doping could occur in the ZnO crystal grown
in oxygen-deficient environment. On the other hand, when p-type conditions are assumed
at the high oxygen chemical potential (figure 5(b)), the formation energies of zinc vacancies
are only a little lower than those of the oxygen vacancies as the donor type, indicating that
the effect of self-compensation should also be considered even for ZnO grown in oxygen-rich
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Figure 5. Calculated defect formation energies for selected defects shown in table 2 as a function
of the Fermi level at (a) �µO = −3.44 (low oxygen chemical potential) and (b) �µO = 0 (high
oxygen chemical potential), respectively.

environment. However, it is expected that the self-compensation effect could be significantly
reduced by increasing the oxygen partial pressure in the crystal growth environment. This could
possibly be employed to explain the p-type conduction in ZnO film grown by the ultrasonic
spray pyrolysis method in atmospheric environment in our group [21, 22, 45, 46].

3.5. Defects/carrier concentration at finite temperature

Now we discuss the dependence of concentration of intrinsic defects and carriers on
environmental conditions. The concentration was computed using equations (4) and (6) with
the formation energies from figure 5. The Fermi level was obtained by requiring overall charge
neutrality according to equation (7). Figure 6 shows the concentration of intrinsic defects and
carriers as function of oxygen chemical potential, using theoretical and experimental bandgap,
respectively. The temperature is given at 1000 K. From equation (7), we can see that different
bandgap energy results in a different Fermi level, leading to different concentrations of charged
defects and carriers, while the neutral defect concentration does not change with bandgap since
the formation energy is not related to the Fermi level.
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Figure 6. Concentration of intrinsic defects and carriers at 1000 K. The concentration was computed
using equation (6) with the formation energy values from figure 4. The bandgap is given at (a)
experimental and (b) theoretical bandgap, respectively. The Fermi level was obtained by requiring
overall charge neutrality based on equation (12). Conduction electrons are identified as ‘e’ and holes
in the valence band as ‘h’ with dotted and dashed lines, respectively.

Since the theoretical bandgap is severely underestimated, the carrier concentration is
significantly overestimated by the calculation using the theoretical bandgap (figure 6(a)),
with the maximum electron concentration of more than 1020 cm−3 at low oxygen chemical
potential. To obtain a realistic description of electron concentrations in pure ZnO, the CBM
is shifted upwards to the value of the experimental bandgap. The resulting carrier and defect
concentrations are shown in figure 6(b). ZnO exhibits weak n-type behaviour at low oxygen
chemical potential and converts into p type with the increase of oxygen chemical potential. ZnO
shows strong p-type conduction at high oxygen chemical potential. From the dependence of
the concentration of carriers on the temperature (figure 7(a)), it can be seen that at low oxygen
chemical potential the Fermi level locates near the middle of the bandgap throughout a wide
temperature range. Thus the conduction electron concentration (5.5 × 1011 cm−3 at 1000 K) is
only a little higher than the hole concentration (2.3 × 1010 cm−3 at 1000 K), leading to weak
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Figure 7. Calculated carrier concentration as a function of temperature at (a) �µO = −3.44 eV
(low oxygen chemical potential limit) and (b) �µO = 0 (high oxygen chemical potential limit),
using the experimental bandgap. Conduction electrons are identified as ‘e’ and holes in the valence
band as ‘h’, using dotted and solid lines, respectively. The insets show the dependence of Fermi
level on the temperature.

n-type conduction. On the other hand, the Fermi level is close to the VBM at high oxygen
chemical potential (figure 7(b)), resulting in much higher hole concentration (7.2 × 1016 cm−3

at 1000 K) than electron concentration (1.8 × 105 cm−3 at 1000 K), which gives the system
p-type behaviour. It is also noted from figure 6(a) that the conversion from n type to p type
occurs at the oxygen chemical potential as low as −3.2 eV, indicating that the intrinsic ZnO
can easily show p-type conduction, which contradicts the experimental findings, i.e., the strong
n-type conduction in undoped ZnO. Two possible reasons can account for this. Firstly, the low
conduction electron concentration results from the deep transition level of the oxygen vacancy,
about 2.3 eV (0/2+) below the CBM (figure 5), while the transition level of the zinc vacancy is
only 0.2 (0/1−) and 0.6 eV (1−/2−) above the VBM. Experimental studies also confirmed that
the oxygen vacancy forms a deep level in the bandgap of ZnO [47, 48]. Such low conduction
electron concentration indicates that the intrinsic defects cannot play an important role in the n-
type conductivity of unintentionally doped ZnO, which is in agreement with Kohan and Van de
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Walle’s conclusions [23, 27]. Secondly, the defect formation energies and transition levels can
be affected by the GGA underestimation for the bandgap. Although many correction methods
for the defect formation energies have been reported [9, 23, 28, 29], the reliability of these
corrections needs further confirmation. Thus we refrain from using any corrections of defect
formation energies for bandgap error. However, it is necessary for further study on the reliable
correction for the bandgap error to obtain more reliable concentrations for defects and carriers
in wide-bandgap semiconductors by first principle calculations.

Despite the difference in calculated concentration of defects and carriers between
using theoretical and experimental gaps, the general conclusion can be extracted from both
calculations that oxygen and zinc vacancies always show the highest concentration over
the oxygen chemical potential range defined in equation (5). Oxygen and zinc interstitials
also exhibit a considerable concentration, while oxygen and zinc antisites have much lower
concentrations than the vacancies (not shown in figure 6).

3.6. Origin of green photoluminescence
As mentioned in the introduction, ZnO often exhibits a photoluminescence band in the visible
range, centred between 2.3 and 2.5 eV. The most likely origin for this emission is attributed to
the oxygen and zinc vacancies, as the defects with highest concentration in ZnO. Reference [16]
suggested that the zinc vacancy should give rise to green photoluminescence according to the
transition level between the −1 and −2 charge states. However, few experimental results can
confirm their conclusion. Many experimental studies indicated that the green emission band
always occurs in ZnO grown in an oxygen-deficient environment, while the emission becomes
very weak in ZnO grown at high oxygen partial pressure [21, 22]. Our calculations show that
at low oxygen chemical potential the oxygen vacancy has a concentration about 105 times
higher than the zinc vacancy. In addition, the transitional level between 0 and +2 charge
states of VO is 1.1 eV above the valence band maximum, very close to the value (1.2 eV
above VBM) from nonlinear spectroscopy measurements [48]. The resulting transition energy
between the conduction band and the defect level of the oxygen vacancy (2.3 eV) corresponds
to the observed green emission. The fact that VO has a deep level within the bandgap and is the
most abundant defect in an oxygen-deficient environment indicates the high possibility of the
oxygen vacancy as the source of green luminescence.

4. Conclusion

In conclusion, first-principles calculations with the PAW method in the GGA were applied
to study the intrinsic defects in wurtzite ZnO. Systematic checks for the reliability of our
calculations were discussed in detail, and the error bar for each calculated defect formation
energies is estimated carefully. Comparisons with previous studies were also made. Our
calculations show that oxygen and zinc vacancies are the dominant intrinsic donor and acceptor
defects in ZnO, depending on the oxygen chemical potential. We also suggest that intrinsic
defects are not the main source of strong n-type conductivity in unintentionally doped ZnO.
The deep donor oxygen vacancy is proposed to be the origin of the experimentally observed
visible photoluminescence band between 2.3 and 2.5 eV. Our calculations are useful for
further understanding the physics of intrinsic defects and some interesting phenomena in
unintentionally doped ZnO.
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